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Abstract
Background: Despite continuous efforts of the international community to reduce the impact of
malaria on developing countries, no significant progress has been made in the recent years and the
discovery of new drugs is more than ever needed. Out of the many proteins involved in the
metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational
drug discovery.

Motivation: Recent years have witnessed the emergence of grids, which are highly distributed
computing infrastructures particularly well fitted for embarrassingly parallel computations like
docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on
plasmepsins and ended up in the identification of previously unknown scaffolds, which were
confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment
took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR),
and on a new promising one, glutathione-S-transferase.

Methods: In silico drug design, especially vHTS is a widely and well-accepted technology in lead
identification and lead optimization. This approach, therefore builds, upon the progress made in
computational chemistry to achieve more accurate in silico docking and in information technology
to design and operate large scale grid infrastructures.

Results: On the computational side, a sustained infrastructure has been developed: docking at
large scale, using different strategies in result analysis, storing of the results on the fly into MySQL
databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA
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rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro
results are underway for all the targets against which screening is performed.

Conclusion: The current paper describes the rational drug discovery activity at large scale,
especially molecular docking using FlexX software on computational grids in finding hits against
three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in
malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries
for other biological targets relevant to fight the infectious diseases of the developing world.

Background
Discovering hits with the potential to become usable
drugs is a critical first step to ensure a sustainable global
pipeline for innovative anti-malarial products. While the
establishment of public-private partnerships has helped
to stimulate product R&D for some neglected diseases,
increased emphasis needs to be placed on the high-risk
early discovery phase.

This paper describes an established hit discovery strategy
for neglected diseases through in silico screening using
computing grid infrastructures, as a very cost effective way
to select the most promising drug-like molecules to
address Plasmodium multi-drug resistance. Here the aim
is to counter-act malaria by finding hits to multiple tar-
gets. This is so far the first large scale in silico drug finding
initiative against malaria and neglected diseases.

The project fits in the drug discovery pipeline between ini-
tiatives like the TDR drug target portfolio programme [1],
which aims at developing a prioritized drug target portfo-
lio, and initiatives like DNDi [2], which address pre-clini-
cal research on new lead compounds. WISDOM project
enables the cost effective selection of focused compound
libraries for drug targets to allow cheap and small scale in
vitro and in vivo tests affordable by all research laborato-
ries, even in less developed countries.

This approach builds upon the progress made in compu-
tational chemistry to achieve more accurate in silico dock-
ing and in information technology to design and operate
large-scale grid infrastructures.

This paper describes the collaborative framework, which
has been established between bio-informaticians, bio-
chemists, pharmaceutical chemists, biologists and grid
experts, in order to produce and make selected lists of
potential inhibitors available. It also aims at publicizing
the service for research laboratories interested to use it for
their own preferred target.

WISDOM, a virtual docking service on grids
Due to very high costs associated to the drug discovery
process as well as due to late stage attrition rates, novel

and cost effective strategies are absolutely needed for com-
bating the neglected diseases, like malaria. Virtual high
throughput screening is a technique, which can screen
millions of compounds rapidly, reliably and cost effec-
tively on a computer [3,4].

There are millions of chemical compounds available in
the labs and also in 2D, 3D electronic databases due to
advances in the combinatorial chemistry, but it is nearly
impracticable to synthesize them [5]. Moreover it is
labour-intensive and very expensive to screen such a high
number of compounds in experimental labs by high
throughput screening (HTS). Besides the heavy costs
(required for developing efficient and reliable assays) the
hit rate in HTS is quite low [5].

In addition to the availability of a huge number of chem-
ical compounds, there is also a significant increase in the
number of resolved X-ray crystal structures, most of which
are freely available from the Brookhaven protein database
[6].

The presence of sound open source electronic data of
chemical compounds as well as the data for macromole-
cules like proteins, enzymes facilitated virtual high
throughput screening (vHTS). Virtual high throughput
screening (vHTS) by molecular docking serves as a com-
plementary or alternative technique to experimental high
throughput screening (HTS). In silico drug design, espe-
cially high throughput virtual screening is a widely-used
and well-accepted technology in new lead identification
and optimization [7,8].

The downside to vHTS is that screening millions of chem-
ical compounds is computationally intensive: it has a high
storage demand and is, therefore, termed as computa-
tional data challenge. Screening each compound, depend-
ing on structural complexity, can take from one to few
minutes on a standard PC, which means screening a data-
base with millions of chemical compounds can take years
of computation time. Computational grid infrastructures
are the best attempt to solving this problem thus far. The
computing resources from EGEE grid infrastructure were
utilized extensively [9-11], besides EGEE [12] several
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other grid infrastructures such as: AuverGrid [13], EELA
[14], EUChinaGrid [15] and EUMedGrid [16] contributed
significantly to the current project.

The combination of these two techniques (vHTS and Grid
computing) will definitely decrease the financial and cost
implications of rational drug design strategies. Several
docking applications have already been run on grids and
proved to be successful. Some of the success stories in in
silico drug design on grid are the smallpox research grid
[17], Anthrax research project and Cancer project [18-20].

WISDOM-I [21], the first large scale deployment of
molecular docking application on EGEE, which took
place from August 2005 to September 2005 has seen 42
million dockings, which is equivalent to 80 years of CPU.
Virtual screening of 500,000 chemical compounds was
performed by using FlexX against different plasmepsins
(aspartic protease implicated in haemoglobin degrada-
tion). On the biological front three scaffolds were identi-
fied, one of them is guanidino scaffold, which is likely to
be novel as they have not been reported as plasmepsin
inhibitors before [22]. Experimental results have proved
that the some of the compounds selected from WISDOM-
I function as sub-micromolar inhibitors against plasmep-
sin [23].

The main goals of WISDOM project were to identify
inhibitors to be tested in the experimental laboratories
and to develop fault tolerant WISDOM production envi-
ronment [24], which is capable of deploying molecular
docking application efficiently on grid infrastructure.
Drug targets from malaria are chosen initially, but this
could be expanded to determine ligand binding to any tar-
get protein.

The grid enabled virtual screening process
WISDOM-II, second large scale virtual screening on malaria
Previous work (WISDOM-I), has been focused on a single
target family: the plasmepsin family of proteins. However,
due to complexity of the life cycle and drug resistance
more targets and more metabolic pathways have to be tar-
geted to counteract the disease. Hence, in the current
project: WISDOM-II, different validated targets involved
in diverse metabolic activities of the parasite were

selected. As different species of Plasmodium cause malaria
to humans; in the current project, proteins not only from
Plasmodium falciparum, but also from the Plasmodium vivax
were embattled. The extension of the work to target P.
vivax is due to its resurgence and casualties caused [25].
From Table 1, it is clear that targets were chosen as such to
identify novel inhibitors for different proteins implicated
in malarial life cycle with the idea in mind to interfere
with resistance, consequently developing novel proce-
dures and strategies for storage, post-processing, analysis
of the docking results and finally selecting a representative
set of potential inhibitors for further in vitro and in vivo
testing.

Target structures
Glutathione-S-transferase
The P. falciparum glutathione S-transferase enzyme
belongs to a super family of multifunctional, dimeric,
phase II detoxification enzymes that can bind various
xenobiotic, electrophilic substrates. Parasites as well as
other rapidly dividing cells are highly dependent on a
functional antioxidant defense system. For most parasites
the sources of reactive oxygen species is mainly their high
metabolic rate as well as oxidative stress imposed by the
host's immune system. Additionally, the P. falciparum par-
asite performs haemoglobin degradation – a source of
oxidative stress and free radicals [26]. The antioxidant
defense system of P. falciparum is mediated by an ensem-
ble of antioxidants like glutathione as well as antioxidant
enzymes [27].

The primary function of GST lies in the protection of cel-
lular macromolecules. GST deactivates harmful chemicals
via the nucleophilic addition of the thiol (SH) group from
glutathione (GSH), to the hydrophilic moiety of the toxic
agent, thus rendering the electrophilic compounds harm-
less and enabling the removal of the substance. Because of
the inactivation of potentially hazardous substances, GST
activity is beneficial to an organism's health and survival
[28,29]. In chloroquine-resistant parasites GST activity is
directly and positively related to drug pressure [30,31].

Inhibition of GST will impair the general detoxification
processes and, because the enzyme has peroxidase activ-
ity, reduce the antioxidant capacity of the parasite [32].

Table 1: Structural features of the targets used in WISDOM II

Target Activity Structure PDB id Resolution Å Cocrystallized Ligand Co-factor

PfGST Detoxification Dimer 1Q4J 2.2 GTX NO
Pf DHFR (wild type) DNA synthesis Polymer 1J3I 2.33 WR99210 NADPH

Pf DHFR (Quadruple mutant) DNA synthesis Polymer 1J3K 2.10 WR99210 NADPH
PvDHFR

(wild type)
DNA synthesis Polymer 2BL9 1.90 Pyrimethamine NADPH

PvDHFR (Double mutant) DNA synthesis Polymer 2BLC 2.25 Des- chloropyrimethamine NADPH
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PfGST (EC 2.5.1.18) is a multi-functional protein consist-
ing of two monomers. In accordance with other GST
enzymes each monomer of PfGST contains an N-terminal
α/β domain and C-terminal α-helical domain. The active
site is defined by two binding sites: the G site, which binds
GSH, and the more flexible H site, which can bind various
other substrates. The monomers are predominantly held
together by hydrophobic effects, but four salt bridges and
four hydrogen-bonded pairs of residues also contribute to
the dimerization [33,34]. The G site is relatively rigid and
not greatly affected by inhibitor binding, with the excep-
tion of the C-terminal tail and the loop connecting the α-
4 and α-5 helices. This region is very specific for its natural
substrate (GSH). The recognition and binding occur via a
network of polar interactions between PfGST and GSH.

The hydrophobic binding pocket (H site) is considerably
more variable than the G site, due to the nature of second
substrates. The substrate specificity of different isozymes
in the GST super family can be attributed to the variation
of amino acids present in the H site consequently leading
to different interactions a ligand can form with amino
acids in the H site of the enzymes [35].

PfGST also possesses a short μ-loop. In contrast to other
μ-class GST enzymes, PfGST has only five residues after α-
8, which is too short to form a wall or α-helix. This feature
is lacking in PfGST, resulting in a more solvent-accessible
H site. The result is that the H site is less shielded from sol-
vents [35,36].

Plasmodium vivax and P. falciparum DHFR
Plasmodium vivax is becoming resistant to chloroquine
and other antifolates, such as pyrimethamine [37-39]. The
target enzyme of pyrimethamine is dihydrofolate reduct-
ase (DHFR). It was demonstrated that the resistance to
pyrimethamine is caused by point mutation [40]. Interest-
ingly, the crystal structure of DHFR enzyme from P. vivax
was published by Kongsaeree et al in 2005 [41], where
they indicated that the principal difference between DHFR
wild type and mutant, implicated in the antifolate resist-
ance, is a structural change in the chain of Asn-108, and
this steric conflict is not present in P. falciparum.

Antifolates, such as pyrimethamine and cycloguanil, are
the most exploited class of anti-malarials. To date, the
most widely used antifolate is a combination of pyrimeth-
amine, a dihydrofolate reductase (DHFR) inhibitor, and
sulphadoxine, a dihydropteroate synthase (DHPS) inhib-
itor. DHFR and DHPS are two enzymes that belong to the
folate biosynthetic pathway [42]. Although their synergis-
tic action results in enhanced activity, their efficacy is seri-
ously compromised by drug resistance. As a major
advance towards the understanding of drug resistance in
malaria, it has been demonstrated that drug resistance is

due to single and multiple mutations of various amino
acids in the DHFR and DHPS active sites in P. vivax as well
as P. falciparum [43,44]. The analysis of the gene encoding
P. falciparum DHFR from resistant parasites suggested that
antifolate resistance arises from point mutations in the
DHFR domain, mainly at positions 16, 51, 59, 108, and
164. It has been demonstrated that parasites with muta-
tions at 16 and 108 have developed resistance to cyc-
loguanil, with a thousand-fold drop in the Ki compared
with the wild type, whereas the Ki of pyrimethamine is
almost unaffected. On the contrary, there is cross-resist-
ance between the drugs when multiple mutations at posi-
tion 51, 59, 108 and 164 occur.

Combined homology modelling and molecular dynamics
simulation studies proposed how pyrimethamine, cyc-
loguanil and WR99210 (a third-generation antifolate)
bind to wild type and resistant mutant P. falciparum and
P. vivax DHFRs [45,46]. Crystal structure determination of
the malarial DHFRs in complex with antifolates have con-
firmed and strengthened the proposed binding modes
[46,47].

Virtual docking procedure
The different steps of the virtual docking procedure will be
described in the following section.

Target preparation
The initial coordinates for all the target structures are
obtained from Brookhaven protein database. Depending
upon the inclusion of the significant residues, active site is
defined as 8.0 – 10 around the co-crystallized ligands.

Glutathione-S-transferase (GST)
The X-ray crystal structure of GST utilized is 1Q4J [33].
1Q4J is a homodimer with two chains A and B. The crystal
water molecules are eliminated from the protein. The
active site is defined as 8 around the co-crystallized ligand:
GTX, all significant residues are included in the binding
site. Re-docking with GTX ligand is performed for further
optimization of the target parameters as well as software
parameters.

Plasmodium vivax DHFR (PvDHFR) and Plasmodium falciparum 
DHFR (PfDHFR)
The protein structures used in this investigation are the
crystal structures of wild-type P. falciparum DHFR (PDB
code 1J3I) and of its N51I+C59R+S108N+I164L highly
resistant mutant (PDB code 1J3K), both in complex with
NADPH and the potent inhibitor WR99210, and the
structures of wild type P. vivax DHFR (PDB code 2BL9)
and of its S58R+S117N resistant mutant (PDB code 2BLC)
in complex with pyrimethamine and des-chloro
pyrimethamine, respectively [41,46]. The structures were
cut at residue Asn231, which corresponds to the DHFR
Page 4 of 16
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1J3I
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1J3K
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2BL9
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2BLC


Malaria Journal 2009, 8:88 http://www.malariajournal.com/content/8/1/88
domain of the bifunctional DHFR-TS structure. Of the
dimer, unit B was chosen because of its less missing resi-
dues. Met 1 was built as in unit A, and the position of
missing residues from Asp87 to Asn90 was modelled with
Modeller software [48]. At this purpose, the enzyme
sequence with the four missing residues was aligned with
the complete sequence, and ten models were generated
with the Modeller software using 1J3I as template. The
best model according to Prosa II was saved, and the coor-
dinates of the four missing residues were inserted back in
the original crystal structure. For the quadruple mutant of
P. falciparum DHFR, the missing segment from residue 81
to 97 was taken from the wild type structure. P. vivax
DHFR was prepared using the same methodology. Resi-

dues E24 and K48, which have truncated side chains in
the original crystal structures, were assigned based on
standard Amber topologies of amino acids. Residues from
84 to 105 missing in the double mutant structure were
taken from the wild type structure.

All water molecules in the crystal structure were removed
except for two conserved waters embedded into the pro-
tein (corresponding to W1249 and W1250 in the original
1J3I crystal structure) and close to the important residue
D54. Hydrogens were added to the structures using the
internal coordinates of the AMBER all-atom data base. All
Lys and Arg residues were positively charged and Glu and
Asp residues negatively charged. All calculations were per-

Illustrates the ligand plots of targets used in the current studyFigure 1
Illustrates the ligand plots of targets used in the current study. displays: A. Ligand plot of GST; B. Ligand lot of 2BLC; 
C. Ligand plot of 2Bl9; D. Ligand plot of 1J3I; E. Ligand plot of 1J3K. Ligand plots are obtained from Brookhaven protein data-
base.
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formed with AMBER9 and the ff03 force field [49]. The
parameters of the cofactor NADPH were taken from previ-
ous simulations [47,49].

The structures prepared as described above were refined
with energy minimization, employing a distance-depend-
ent dielectric constant e = 4r and a cutoff of 12 Å for non-
bonded interactions. Firstly, 500 steps of conjugate gradi-
ent energy minimization were performed on the hydro-
gen atoms only, followed by 5,000 steps of minimization
on the entire structure. Then, in order to refine the posi-
tion of the hydrogen atoms added with Amber, 50 ps
molecular dynamics at 300°K was performed on the
hydrogens by adding strong restraints on the heavy atoms.
Finally, 5000 steps of minimization were performed with-
out restraints. All minimizations were performed on the
protein structures with the corresponding antifolates
bound in the active site (WR99210 or Pyr). For the anti-
folates, partial atomic charges on atoms were calculated
with the AM1-BCC method [50] implemented in the ante-
chAmber module of Amber9. Atom types and missing
force-field parameters of the ligands were assigned based
on the General Amber force-field (gaff) [51].

Compound database
The compound library used for WISDOM was obtained
from the ZINC database [52,53]. The ZINC database is a
collection of 4.3 million chemical compounds from dif-
ferent vendors. ZINC library has been chosen because it is
an open source database, and the data are available in dif-
ferent file formats (Sybyl mol2 format, sdf and smiles).
So, basically, ZINC provides virtual compounds ready for
virtual screening. A total of 4.3 million compounds were
downloaded from the ZINC database and screened
against targets mentioned in Table 1.

FlexX: Docking software
The docking software used in the current study is FlexX
[54,55]. It is extremely fast, robust and highly configura-
ble computer program for predicting protein-ligand inter-
actions. Standard parameter settings are used except for
two cases: "Place particles" [56] and "Maximum overlap
volume". These two parameters were subject to deliberate
variation with FlexX. Since every target has a unique
response to docking software parameters set, there is no
generic solution to the parameter sets. Initial optimiza-
tion experiments were done to arrive at a parameter set
which gave best results in redocking experiment for a par-
ticular target.

Setting up the platform before large-scale virtual screening
Re-docking can be defined as the removal of the co-crys-
tallized compound (inhibitor or substrate) and then using
a specific parameter set to dock this compound back into
the active site of its target protein to validate the programs
ability to dock novel compounds into the active site.
These experiments serve as positive controls before large
scale docking since aids in defining the active site and
other simulation conditions. The docking pose during
these experiments is validated by comparing the pose
based on the RMSD between the atoms of the co-crystal-
lized pose and the docking pose, as well as visual inspec-
tion of the orientation of the ligand. The lower the RMSD
value and the more similar the docking pose to the co-
crystallized ligand the better the docking results. Ligand
plot information obtained from Brookhaven database
serves as a template to validate the docking pose. The lig-
and plots of all the targets used in the current project are
displayed in Figure 1. Ligand plots displays the binding
mode of the co-crystallized ligand within the active site of
the receptor, besides this it also describe the atom-to-atom

Illustrates the redocking of WR9 ligand against 1J3K in parameter 8Figure 2
Illustrates the redocking of WR9 ligand against 1J3K in parameter 8. On the left hand side, Interaction information 
between ligand atom and target protein are displayed. On the right hand side redocked pose (CPK color) and reference coor-
dinates (Red color) are displayed.
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interaction between the co-crystallized ligand to its
respective receptor. This information is later compared
with the docking poses before large-scale screening.

Re-docking
The results of the re-docking experiments are displayed in
Table 2. Results are analysed at three levels: the RMSD
(root mean square deviation) between the docking pose
and the co-crystallized ligand, the docking score and the
interaction information between protein and ligand.
FlexX has a unique ability to compute the atom-to-atom
interaction between the protein and the ligand. This infor-
mation is exploited and further used in analysing the
results. The docking poses of the co-crystallized ligands
generated by FlexX are manually visualized and compared
to their respective ligand plots. Two aspects were consid-
ered; the binding mode of the docking pose should be
similar to ligand plot and should make interactions to the
key residues of the receptor as described in ligand plots.
Ligand plots are displayed in Figure 1. Table 2 displays the
docking score and RMSD of the best docking conforma-
tion. For target PfGST (1Q4J: PDB ID), parameter set 1
performed better compared to other parameter sets. How-
ever 3.68 Å is still a big deviation (ideal RMSD should be
<2 Å), but the binding mode the co-crystallized ligand
adopted was quite convincing, as the docking pose was
making interactions to the key residue. Besides that, the
docking pose made interactions to the key residues
responsible for the activity of the protein. In case of P.
vivax DHFR (2BLC and 2BL9), the docking of the co-crys-
tallized ligand did not perform well. The RMSD devia-

tions were high (>4 Å) and the binding modes were not
convincing. This is due to clashes between the protein and
ligand atom surfaces. For PfDHFR re-docking is per-
formed against protein structures before and after mini-
mization by Amber software. Docking software
parameters were tuned accordingly. For PfDHFR, we
increased the maximum allowed overlap between the pro-
tein and ligand atom to diminish the van der Waals
clashes. Re-docking against minimized structures with the
same parameter sets gave best results. All the parameter
sets reproduced the actual binding mode of the ligand,
further made interactions to key amino acids and RMS
deviation were less than 2 Å. Re-docking results of PfD-
HFR minimized structures are displayed in Table 3 and 4.
Besides docking the co-crystallized ligand, well-known
inhibitors against PfDHFR are docked. Table 3 and 5 dis-
plays the results of cycloguanil and pyrimethamine, WR9
under different docking parameter sets. Parameter 8 (max-
imum allowed overlap volume between protein and lig-
and surface: 100 Å3) gave the best results in terms of
docking score, docking conformation and interactions to
key amino acids. The results displayed in Table 4 corre-
spond to the quadruple mutant results (1J3I: PDB ID) and
Table 5 corresponds to the wild type results (1J3K: PDB
ID). Figure 2 and 3 display the re-docking pose of WR9
against minimized structure of the Pf DHFR (1J3K) and Pf
DHFR (1J3I), respectively, on the right hand side of the
figure we can see the docking pose (CPK color) and refer-
ence co-ordinates in red color (IJ3K) and violet color
(1J3I). On the left hand side protein ligand interactions
are displayed. Highlighted are the interactions responsi-

Illustrates the re-docking of WR9 ligand against 1J3I in parameter 8Figure 3
Illustrates the re-docking of WR9 ligand against 1J3I in parameter 8. On the left, Interaction information between lig-
and atom and target protein are displayed. On the right re-docked pose (CPK color: Corey, Pauling, Kultin color scheme) and 
reference coordinates (violet color) are displayed.
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ble for the activity of the protein (parameter sets 5, 6, 7, 8
correspond to maximum allowed overlap volume 10, 20,
30, 100 Å3respectively).

Virtual screening on the EGEE grid infrastructure
After setting up the docking platform, virtual screening
was performed on 4.3 million compounds against the tar-
gets specified in Table 1. Screening 4.3 million com-
pounds on multiple target structures demands huge
computation and storage resource power. EGEE and its
related grid infrastructures (AuverGrid, EELA, EUChina-
Grid and EUMedGrid) provided the resources required for
executing the data challenge. Deployment strategies and
WISDOM production environment were developed for
submission of jobs and retrieval of results on the EGEE
grid. More information on deployment and wisdom pro-
duction environment can be found in Jacq et al [21]. The
significant achievement on the grid side is the improved
WISDOM production environment, which enabled

smooth and successful deployment of docking jobs on the
grid. The major difference between our previous deploy-
ments (WISDOM-I and the data challenge on avian flu) is
the automatic resubmission of the docking jobs on the
grid. Besides the enormous gain in the computing
resources available, grid infrastructures enable also to
store the tera bytes of scientific data and to share this data
between the research laboratories located not only in dif-
ferent countries but also on different continents.

Output data
The outputs of the docking results in FlexX are log files. All
the results are stored and analysed by using MySQL data-
bases. Three different forms of results are saved and ana-
lysed from each docking assay:

i. Docking scores of the ten best solutions after cluster-
ing

Illustrates the re-docking of WR9 ligand against 1J3I in parameter 8Figure 3
Illustrates the re-docking of WR9 ligand against 1J3I in parameter 8. On the left, Interaction information between lig-
and atom and target protein are displayed. On the right re-docked pose (CPK color: Corey, Pauling, Kultin color scheme) and 
reference coordinates (violet color) are displayed.

Table 2: Re-docking results of different targets in different parameter sets of FlexX

Target Ligand Total Score RMS-Value Total Score RMS-Value Total Score RMS- Value Total Score RMS-Value

1 2 3 4
1Q4J_a GTX -24.33 3.68 -20.99 7.53 -20.15 6.94 -25.93 7.11
1Q4J_b GTX -19.93 6.45 -18.33 11.83 -18.33 11.78 -25.07 6.28
2BLC CP7 -13.47 4.88 -14.09 4.78 -12.53 4.45 -14.43 4.78
2BL9 CP6 -13.657 4.71 -12.50 6.17 -13.65 4.71 -12.50 6.17
Target Ligand Total Score RMS-Value Total Score RMS-Value Total Score RMS- Value Total Score RMS-Value

5 6 7 8
1J3K WR9 -24.33 3.68 -23.91 1.81 -23.75 2.21 -26.41 3.14
1J3I WR9 -30.75 2.49 -21.98 1.41 -20.83 2.69 -25.69 1.76
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ii. Interaction information between protein and lig-
ands of the ten best solutions,

iii. Binding modes of the ten best solutions.

Moreover, the ranking process is the integral part of the
docking software. FlexX have a post processing optimiza-
tion of the docking solution and clustering. Clustering in
FlexX is based on RMSD, angle, and distance deviation
(default values are used for the clustering; the necessity of
clustering docking poses is discussed in [22]).

Database schema to store the results
During the first deployments (WISDOM-I and data chal-
lenges on Avian Flu) the results were stored on the grid
storage elements using the grid data management, this

format made the analysis of the results particularly diffi-
cult, which left some room for improvement.

Since docking and scoring results often need to be
extracted and parsed by biologists, user-friendly data
retrieval systems need to be put in place. Hence, it was
decided to rank the information based on the docking
scores and do some initial filtering of the compounds. The
relevant information was parsed directly into a relational
database. The database was designed around the docking
table (Figure 4), where docking scores are stored, which
represent the binding free energy. The individual energy
contributions to the total free energy of binding are also
stored. This was useful for the filtering of compounds and
it also helped in the docking results analysis. As shown in
Figure 4, the insertion of records is performed directly at

Table 3: Redocking results against quadrupule mutant DHFR

Best Score
(kJ/mol)

RMSD for best solution
(Å)

Rank for Best RMSD solution Score for best RMSD
Solution

Best RMSD
(Å)

QM_WR9_10 -23.22 3.37 106 -9.85 0.76
QM_WR9_20 -23.91 1.81 158 -9.85 0.76
QM_WR9_30 -23.75 2.21 97 -12.57 0.75
QM_WR9_100 -26.41 3.14 40 -18.06 1.14
QM_CYC_10 -23.25 1.46 525 -12.40 0.92
QM_CYC_20 -23.25 1.46 525 -12.40 0.92
QM_CYC_30 -23.25 1.46 146 -20.39 0.97
QM_CYC_100 -23.25 1.46 699 -15.08 1.01
QM_PYR_10 -23.68 1.21 8 -21.80 0.69
QM_PYR_20 -23.68 1.21 8 -21.80 0.69
QM_PYR_30 -23.60 1.26 16 -22.08 0.74
QM_PYR_100 -21.95 1.51 20 -20.31 0.97

QM = Quadruple mutant;
RMSD is in Angstroms;
Score is the free energy in kJ/mol

Table 4: Illustrates re-docking results against wild type DHFR

Best Score (kJ/mol) RMSD for best solution
(Å)

Rank for Best RMSD 
solution

Score for best RMSD
Solution

Best RMSD
(Å)

WT_WR9_10 -30.75 2.49 57 -21.98 0.91
WT_WR9_20 -21.98 1.41 46 -13.78 0.91
WT_WR9_30 -20.83 2.69 2 -19.67 0.99
WT_WR9_100 -25.69 1.76 4 -22.47 0.83
WT_CYC_10 -24.36 1.43 622 -19.60 0.89
WT_CYC_20 -24.47 1.46 720 -19.88 0.95
WT_CYC_30 -24.47 1.46 7 -22.16 0.95
WT_CYC_100 -24.70 1.49 11 -31.49 0.97
WT_PYR_10 -29.72 1.25 6 -28.02 0.46
WT_PYR_20 -29.73 1.26 2 -27.70 0.53
WT_PYR_30 -29.73 1.26 2 -27.70 0.53
WT_PYR_100 -30.49 1.28 3 -30.31 0.49

WT = Wild type;
RMSD is in Angstroms;
Score is the free energy in kJ/mol
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the end of the jobs. A simple perl script, using perl DBI
library, parses the result file and builds, from the useful
information, a query to insert the data from the grid to a
remote MySQL server. The raw result files are also stored
and replicated on the grid storage elements.

The real interest of such a solution is that the useful data
are immediately available for query and analysis during
the process. The usage of relational database along with
SQL eases the selection of the best compounds as they can
be selected accordingly to any attribute of the database
tables. As almost all programming languages offer the
ability to access database management systems through
APIs, it will also ease the interoperability with web servers,
for instance, if one wants to be able to monitor and view
the data on a web interface.

Strategies adopted for analysing the results
Result analysis is performed to identify a small number of
promising compounds that can be tested further. During
WISDOM-I, the compounds with best docking scores

were visualized manually and interestingly observed that
some of the top scoring compounds were making interac-
tions to the key residues but the binding modes of the
compounds were not optimal and not comparable with
docking poses of co-crystallized ligands, one of the reason
may be due to the rigid nature of the receptor. Conse-
quently, the result analysis took place by first extracting
the compounds based on docking scores and then by res-
coring the best docked ligands with more sophisticated
scoring functions. At this purpose, for this project, an
automated refinement and rescoring procedure devel-
oped by Rastelli et al [57], which refines ligand-target
complexes with molecular mechanics and molecular
dynamics, and then calculates the binding free energies
according to MM-PBSA and MM-GBSA methods are uti-
lized. Such procedure, called BEAR (Binding Estimation
After Refinement) [58] significantly improved the overall
procedure and resulted in the identification of plasmepsin
inhibitors (WISDOM-I). Hence, the same procedure was
used to extract the best 5,000 (against GST), 15,000
(against DHFR) compounds based on docking scoring
values. MM-PBSA and MM-GBSA (Molecular mechanics-
Poisson Boltzmann surface area and Molecular Mechan-
ics-Generalized Born surface area) procedures calculate
the absolute free energies for non-covalent interactions of
protein and ligand in solution by using force field based
molecular mechanics method [59,60].

The common filtering process employed in WISDOM
project is displayed in Figure 5. After rescoring by molec-
ular dynamics methods, the compounds are further man-
ually visualized by using Chimera software [61] and other
structural visualizing software. Interactions to key resi-
dues of the receptor and binding mode of the ligand are
main criteria for further selecting the compounds to be
tested in experimental laboratories.

Results and discussion
Docking results
Docking results of PfGST are represented in Table 5. Six
amino acids were considered to be responsible for the
activity of the target: Tyr9, Gln58, Val59, Ser72, Gln71
and Lys15. Chemical compounds interacting with these
amino acids were of significance and hence computed. All
ten top scoring compounds displayed in Table 5 made
interactions to these key amino acids. A binary scoring
mode was adopted for the residue reactions in Table 5,
column 3: "0" represents false (no interaction with the
specified amino acid) and "1" represents true (either a
hydrogen bond or a hydrophobic interaction, was made).
From Table 5, it is clear that all the top scoring com-
pounds are making interactions with at least one of the
key amino acids. These observations are later compared to
the standard protein ligand interaction information

Table 5: Represents top compounds by docking against PfGST_a 
with interactions to key amino acids

Compound FlexX score Interaction to Key AA'

ZINC03989574 -50.586 10111
ZINC03989578 -49.698 11101
ZINC04847284 -49.698 11101
ZINC03930012 -48.396 10000
ZINC04522767 -47.633 11100
ZINC05808725 -47.006 01011
ZINC04068384 -46.956 01011
ZINC03948265 -46.286 11100
ZINC02748596 -46.117 11111
ZINC02102883 -46.016 01011

A view of the result database schema used to store and ana-lyse docking resultsFigure 4
A view of the result database schema used to store 
and analyse docking results.
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obtained from ligand plots displayed in Figure 1. This par-
ticular method not only allowed us to select compounds
based on scoring but also based on interaction informa-
tion (hydrophobic and hydrophilic interactions), which
is very significant from the structural point of view for the
identification of hits.

Diversity analysis of top scoring compounds for PfGST and 
PfDHFR
To give wide overview on the results obtained by docking,
diversity analysis against the PfGST best 5,000 com-
pounds and PfDHFR best 15,000 compounds by docking
score was performed by using MOE software [62]. Finger
prints of all the compounds were created by using FP: BIT
MACCS and then used Tanimoto coefficient (TC) for cal-
culating the diversity among the compounds [63]. At sim-
ilarity cut off of Tanimoto coefficient 0.7, out of 5,000
compounds of PfGST, 3,394 different clusters were identi-

fied by this method, which indicates the best 5,000 com-
pounds diverse and dissimilar. The Tanimoto coefficient
(similarity = the number of bits set in both molecules
divided by the number of bits set in either molecule) is a
validated and most commonly used similarity coefficient
in chemical informatics while calculating diversity of the
chemical compound database. It ranges from values 0 to
1, while value "1" corresponds to completely similar com-
pound and "0" completely disssimilar). Diversity analysis
is performed to demonstrate the best compounds by
docking score are diverse enough for further analysis and
for the identification of novel scaffolds. Pair wise fre-
quency (Y-axis) and Tanimoto coefficient value (X-axis)
are plotted and displayed in Figure 6. The values of mean,
median, 1st quartile, 3rd quartile of the histogram are 0.44,
0.43, 0.37, 0.50 respectively. The 1st quartile and 3rd quar-
tile values signify that 25% of the compounds possess TC
values of 0.37 and 75% of the compounds possess TC val-

Overall filtering process employed in WISDOM-II projectFigure 5
Overall filtering process employed in WISDOM-II project. demonstrates overall filtering process employed in WIS-
DOM-II project. The first three steps in the workflow (Docking, Molecular dynamics and rescoring by MMPBSA, MM-GBSA) 
are performed on Computational grids and the visualizations by chimera software are performed manually on the local 
machine of the user.
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ues of 0.5. For PfDHFR diversity analysis is performed
against 15,000 top scoring compounds. Pair wise fre-
quency (Y-axis) and Tanimoto coefficient value (TC) (X-
axis) are plotted and displayed in Figure 7. The values of
mean, median, 1st quartile, 3rd quartile of the histogram
are 0.42, 0.40, 0.34, 0.48 respectively. The 1st quartile and
3rd quartile values signify that 25% of the compounds
possess TC values of 0.34 and 75% of the compounds
possess TC values of 0.48. These observations and figures
indicate that the top scoring compounds are diverse and
have potential to find novel compounds. The frequency
on the Y-axis represents pair wise similarity of each com-
pound against all the compounds in the database (5,000
× 5,000 times for PfGST).

Modeling aspects of final hits against PfGST
To understand the interactions between PfGST and final
hits, the ligand plots for each complex (PfGST and the
compound) were generated and further visualized manu-
ally. Protein ligand interactions are studied in three
dimensions and for clarity in displaying they are depicted
as 2D interaction diagrams. These interactions presented
here are generated using the ligand plot module of MOE
software. It is evident from Figure 8 that inhibitors are
located in the center of the active site, and are stabilized

by hydrogen bonding interactions. The hydrogen bond-
ing information along with their distances is listed in
Table 6. Figure 8 displays the binding modes of the five
best compounds in the active site of the PfGST_a chain. To
allow the comparison of binding mode of the compounds
and co-crystallized ligand, ligand plot and interactions
information is generated for GTX (Cocrystallized ligand of
PfGST). It is obvious from Table 6 and Figure 8 that the
compounds listed here possess comparable binding poses
and patterns. Especially compounds ZINC03533756,
ZINC03830430, ZINC03580546, ZINC02305869 gener-
ated interaction patterns very similar to the one observed
with GTX; making hydrogen bonding to Val59 and Ser72
with backbone as well as with side chains of the amino
acids.

Conclusion and prospective
In this paper, the potential impact of grid infrastructures
for in silico drug discovery is demonstrated. The effort
described here focussed on two malaria biological targets,
DHFR and GST, but at much reduced cost, the same strat-
egy can be applied to produce focused compound librar-
ies for any other malaria targets. Through this article, the
intention is to draw the attention of the research commu-
nities working on these neglected diseases to the opportu-

Diversity analysis of the top scoring 5000 compounds against PfGSTFigure 6
Diversity analysis of the top scoring 5000 compounds 
against PfGST. Demonstrates diversity analysis of the top 
scoring 5000 compounds against PfGST. The red line on the 
histogram is placed at TC value 0.7 and large bars on the left 
hand side before the red line indicates, the compound data-
set is diverse.

Diversity analysis of the top scoring 15000 compounds against PfDHFRFigure 7
Diversity analysis of the top scoring 15000 com-
pounds against PfDHFR. Demonstrates diversity analysis 
of the top scoring 15000 compounds against PfDHFR. The 
red line on the histogram is placed at TC value 0.7 and large 
bars on the left hand side before the red line indicates, the 
compound dataset is diverse.
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nity offered by this grid-enabled virtual screening
approach for producing short lists of particularly promis-
ing molecules, which can be tested in vitro at a reduced
cost. Besides the use of the computational grids for pro-
ducing large amount of scientific data, grids form a plat-
form for the convenient global exchange of the chemical
data produced.

One major bottleneck in large scale screening experiments
is the handling of large data output of these experiments.
As shown in this paper, this problem is addressed by pars-
ing the results into a MySQL database, storing the docking
score as well as atom-to-atom interaction between the
protein and ligand. The interaction information plays a
vital role in selecting the hits, since it takes the compound
counterpart, the protein, into consideration as well.

Diversity analysis (using finger prints, MACCS keys and
Tanimoto Coefficient) was performed on the best com-
pounds based on docking results and revealed that the
compounds are quite diverse and sensible for further anal-
ysis. Future works aims at two things: an extension of the
virtual screening pipeline by additional analysis methods
and an even tighter integration of in silico prediction of
candidate molecules and experimental validation of the
compounds.

As an extension of the in silico pipeline for virtual screen-
ing, data handling and data analysis methods have to be
improved significantly. The storage of docking results in
the database was just a first step; in the future it is expected
to be able to learn from in silico experiments by analysing
entire series of docking experiments. Techniques support-

PfGST-compound hydrogen bonding interactionFigure 8
PfGST-compound hydrogen bonding interaction. Displays PfGST-compound hydrogen bonding interaction. Interaction 
informations are displayed for the best compounds which have comparable hydrogen bonding pattern like that of co-crystal-
lized ligand, a.GTX (See table 6 for summary of interactions for best compounds).
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ing the judicious selection of chemical compounds from
the large scale screening data will need to be improved.
New features of drug-like molecules such as their poten-
tial toxicity will have to be addressed by an extension of
the in silico screening through predictive toxicology sys-
tems. On the long run, it is likely to extend the in silico
drug discovery workflow by models for predictive ADME.
The rather proprietary nature of the drug discovery process
in the pharmaceutical industry resulted in limited availa-
bility of models in this field, but initiatives such as the
European Innovative Medicine Initiative (IMI) might help
to foster broader uptake of computational models for pre-
dictive ADME (and toxicity) by altruistic research initia-
tives, such as WISDOM.

The current study may serve as a template for finding hits
cost effectively by utilizing the in silico methods against
multiple targets at the same time. The WISDOM collabo-
ration is also keen to receive requests for docking other
malarial targets according to the procedure described in
this paper.
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Table 6: PfGST interactions against best compounds are displayed

Ligand Name Ligand---Protein Protein Residue Type of interaction Distance 

GTX 1. N--O & O---N 1. Val59 1. H-don & H-acc 1: 2.85 & 2.81
2. O---OG & O---N 2. SER72 2. H-acc & H-acc 2: 2.51 & 2.87
3. N---O 3. LYS117 3. H-don 3: 2.81

ZINC012010752 1. N---OE & O---NE 1. GLN71 1. H-don & H-acc 1: 1.93 & 3.02
2. O---OG 2. SER72 2. H-acc 2: 2.78
3. O---NE 3. GLN56 3. H-acc 3: 3.02

ZINC01788367 1. O---N & O---OG 1. SER72 1. H-acc & H-acc 1: 3.02 & 2.89

ZINC02305869 1. O---NZ & O---NZ 1. LYS15 1. H-acc & H-acc 1. 2.97 & 2.93
2. O--NE 2. GLN71 2. H-acc 2: 2.99
3. O---N & O---OG 3. SER72 3. H-acc & H-acc 3: 2.89 & 2.83

ZINC02449312 1. O---OG 1. SER72 1. H-acc 1: 2.89
ZINC03533756 1. N--O & O---N 1. Val59 1. H-don & H-acc 1: 2.11 & 3.05

2. O---OG & O---N 2. SER72 2. H-acc & H-acc 2: 3.04 & 2.92
ZINC03580546 1. N---OD 1. ASP105 (B) 1. H-don 1: 2.30

2. O--NE 2. GLN58 2. H-acc 2: 3.11
3. O---OG 3. SER72 3. H-acc 3: 2.99

ZINC03830430 1. O---N 1. Val59 1. H-acc 1: 2.91
2. O---N 2. SER72 2. H-acc 2: 2.92

ZINC05225308 1. O---NZ & O---NZ 1. LYS15 1. H-acc & H-acc 1: 2.95 & 3.28
2. O--NE 2. GLN71 2. H-acc 2: 2.92
3. O---N & O---OG 3. SER72 3. H-acc & H-acc 3: 3.30 & 2.92

ZINC02453649 1. O---NE 1. GLN56 1. H-acc 1: 2.93
2. O---N & O---OG 2. SER72 2. H-acc &. H-acc 2: 2.92 & 2.82

Especially displays H-bond interactions. In the table, column 2 represents the ligand atom to protein atom interaction, column 3 represents the 
protein residue against which the compound made the interaction, column 4 represents the type of interaction, column 5 represents the distance at 
with the H-Bond is formed.
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